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Validity of numerical trajectories in the synchronization transition of complex systems
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We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown
via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly
nonhyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state.
There are potentially severe consequences of these facts on the validity of the computer-generated trajectories
obtained from dynamical systems whose synchronization manifolds share the same nonhyperbolic properties.
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There is a steadfast interest in spatially extended dynamtransitional regime from CS. Previous papg8$ have dealt
cal systems as coupled map lattices, in which both space andith shadowing breakdown via UDV in lattices of maps and
time are discrete variables, due to their various physical andscillators with local coupling. On the other hand, the
biological applicationg1]. Complete(or identica) synchro-  present work deals withonlocally couplednaps, for which
nization (CS) occurs when all the coupled maps have the2 transition to CS is observed as the effective coupling range
same value for their dynamical variab[ed. Weakly coupled IS varied, from a global to a local interaction for@]. The
maps are not usually identically synchronized, but, as théatter fact can be fully appreciated only in large lattices. De-
coupling strength increases, they can reach CS. The approakdled analyses of synchronization have been carried out for
to this state occurs in an intermittent fashion, alternating quiglobally coupled lattice$10]. Our main contribution in this
escent states of synchronized behavior with irregular burstgote has been to put together, in a unified framework, ideas
[3]. As the average duration of these quiescent states tends fi@m shadowing theory11], on-off intermittency[12], and
infinity, we attain a CS state. The onset of the transition fronthaos synchronizatioi2,3], using a coupled map lattice as a
CS to intermittent synchronization indicates that the dynamIepresentative example of a complex system.
ics of the synchronized state ceases to be hyperbolic through We examine a one-dimensional chainfcoupled cha-
a mechanism called unstable dimension variabilltypv) otic logistic mapsx—f(x)=4x(1-x), wherex{’ [0,1] is
[4]. the state variable for the sit€i=1,2, ... N) at timen, with

A dynamical syster{such as a chaotic attraciowhose a coupling prescription in which the interaction strength be-
invariant set exhibits UDV fails to have the splitting betweentween sites decays in a power-law fashion with the lattice
stable and unstable manifolds, which is consistent with thelistance{13]
dynamics. The consequences of UDV are potentially danger- , o o
ous from the point of view of the reliability of the numerical 0 0 N f(xﬁ'“))+ f(xﬂ_’))
trajectories one gets from the dynamical systgfl. A Xnr1= (1= e)f(xy’) + () 121 — ,
computer-generated chaotic trajectory is unavoidably sub- J 1)
jected to one-step errors caused by using finite-precision
arithmetic, which makes the noisy trajectory to exponentiallyywhere O<e<1 anda=0 are the coupling strength and ef-
diverge from the true cha0t|_c orbit it is intended to representsy tive range, respectively, am{a)=22}\'=’l i =, with N’
However, when the Qynamlcal S-‘/S‘ef‘“ prgsents the. shadow: (N—1)/2 for N odd. This coupling prescription allows one
Ing property, there exists atrue chac_)tlc trajectory Wh'(.:h s_tay§0 pass continuously from a local Laplacian-type coupling
uniformly close to the numerical trajectory for a certain time

. . . . (when a—x) to a global “mean-field” coupling &=0).
'T“e“’a' [6]'. This shadowing trajectory may not be that par- Periodic boundary conditions and random initial conditions
ticular orbit we have been looking for, but for many

urposes—as when computing stafistical quantities—the§ - assumed.
(F:)anpbe equally usefyl7] PEIng g Y A numerical diagnostic of CS is provided by the order
qually . parametezn:Rnexp(zﬂi%)z(l/N)zJN: exp(2mix), where

In this Brief Report, we aim to harness the connectionR d th litud d | tivelv. of
between the intermittent transition from CS and the shadow=n 21 ¢n aré the amplitude and angie, respectively, of a

ing breakdown induced by UDV, so as to explain the inter-CENtroid phase vector, for a one-dimensional chain with pe-
mittency features from the statistical properties of the approﬂ)_dIC boundary cond|t|qn§13]. A time-averaged amplitude
priate finite-time Lyapunov exponents. Moreover, if the R iS computed over an interval large enough to warrant that
shadowing breakdown is so severe that we could not find € asymptotic state has been achieved by the lattice. A CS
true chaotic trajectory that stays close to the numerical trastate impliesR=1, for all the phase vectors gyrate together
jectories we generate, the latter have their validity comprowith the same phase. When the maps are completely nonsyn-

mised. As we will see, this will be typically the case in the chronized, on the other hand, we get a pattern in which the
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FIG. 1. Synchronized regimes in the parameter plane of cou-
pling strengthe vs effective rangex, for a lattice withN=21 ] ) )
coupled logistic maps. FIG. 2. Normallzed hlstpgram for the relative number of
synchronization plateaus with a given length, fer-1.0 and

. . . _ a=1.147.
site amphtudesxf{) are so spatially uncorrelated that they

b idered tiall d iabl ht .
may be considered essentially as random variables, suc h\?\l}e call «;~0.940 the range parameter value for which the

R V?”'Shes- . . first critical curve reaches the upper limit given by(«a.)
Figure 1 represents a portion of the coupling parameter

lane(strength ver Hoctive r hibiting reions for =1. Accordingly,a* ~1.146 is the value where the second
\F/)vﬁi ifh eng Iedsmus N thac@e ???niz dghegtci) Srk?it critical curve is such that* (a*)=1. Hence, fora> a*,
( CS():' (ii)e;c;?at)nzi tionaaFI)Sre aimeszvhcereo CSe isce\?gnfugll ;t_we will not observe a stationary CS state, irrespective of how

" ; 9 . . . y trong the coupling may be, i.e., the intermittent bursting
tained after a transient characterized by intermittent bursts of .. P :

hronized behavior: afii letel h ontinues for an arbitrarily long time.

honsynchronized behavior, artid ) completely nonsynchro- Near the second critical curve in Fig. 1 the average dura-
nized orbits. These regions are bounded by the cuwVéa)

tion of the laminar regions obeys a power-law scal{rmy
ande;(a). The former corresponds to the valueseadnd « ~(a—a*)"7, when a—a*, and with y=1/2 within the

for which the average order parameter magnitRd®ases to  nymerical accuracy. This suggests that the transition to syn-
be equal to unity. The latter curve was computed by means Qfhronization occurs through a criis4]. The rationale for
the finite-time Lyapunov exponents, as will be explainedihjs analogy identifies a burst between laminar regions as a
later on in this Brief Report. . ~ chaotic transient resulting from the collision of a chaotic
Let us fix the effective range parameter at an intermediat@ttractor with an unstable periodic orbit. The average chaotic
value, sayr=0.4, and decrease the coupling strengfrom  {ransient length in one-dimensional maps, such as the logistic
iis maximum value 1.0 to zero. Ferlarge enough we have mapf(x)=ax(1—Xx) ata=4, obeys an identical scaling and
R=1, or a chaotic CS state. Wher- €.(0.4)~0.69 this CS  with the same critical exponeht5]. This crisis is mediated
state starts to be interrupted by intermittent bursts of nonsyrthrough an unstable-unstable pair bifurcation at those points
chronized behavior, but eventually the stationary CS state iat which there is such a collisidri 6].
achieved again. The bursting becomes more frequent as the Another distinctive feature of the intermittent transition to
coupling strength is further decreased and,eate*(0.4)  synchronization is the universal character of the statistical
~0.57, the order parameter vanishes and the lattice becomdsstribution of the laminar regions. In Fig. 2 we present a
completely nonsynchronized, never to return to a CS stathistogram for the number of the laminar regions with respect
again. Hence, the interval.<e<e* characterizes a transi- to their lengths. Two different regimes are highlighted in the
tion region for which the intermittent bursting is a transientinsets: for small laminar regions the histogram is well fitted
phenomenon. by a power-lawr™®, with w~1.5; whereas the scaling is
This scenario is robust and present for a wide portion ofexponential € <7 for large intervals, withk=10 3. The
the coupling parameter plane. As we increase the value of theresence of the 3/2 scaling plus the exponential decay shows
effective range parameter from zero, it turns out that the that the intermittent transition to CS is of the on-off type
interval characterizing a transition region is pushed toward$12]. We note that, in the neighborhood of the unstable-
higher values of the coupling strengéh We can understand unstable pair bifurcation which mediates the crisis, a given
this fact since the higher the effective rangds, the closer map of the lattice chain receives random kicks through the
we are to a locally coupled lattice, in which only the nearestcoupling with its neighbors. These kicks, in the vicinity of
neighbors contribute in a significant way, such that it be-the bifurcation point, are responsible for the observed on-off
comes increasingly more difficult to have a stationary CSintermittency. In fact, the existence of two distinct scalings in
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FIG. 4. Average value and varian¢mse) for the distribution
eof the finite-time Lyapunov exponents closest to zerowyswhen
e=1.0.

FIG. 3. Normalized histogram of the largest transversal finite-
time Lyapunov exponents for different values of the effective rang
a ande=1.0.

Fig. 2 with a shoulder indicates the presence of noise in th@Ptained for different values of the effective ranggwhich
on-off intermittent scenario, with a crossover time related td1€re plays the role of a bifurcation parameter. The critical
the noise leve[17]. valug for the onset of UDV is also the onset of mtermntept
In the transition region, trajectories off but very near thetransition to CS, atr=a., where an unstable-unstable pair
synchronization manifold experience intermittent bursting,Pifurcation occurs. Numerically the onset of UDV was esti-
such that numerical diagnostics using an insufficiently larganated through computing the value effor which the frac-
time interval could erroneously point out (($8]. On the tion of positive finite-time Lyapunov exponentsp(n)
other hand, this intermittent bursting is directly related to the=JoP(A2(n))d\,, becomes non-zero, yielding the points
shadowing breakdown of chaotic trajectories in the synchroon the curvee;(a) depicted in Fig. 1. Hence, far<ac, no
nization manifold of the coupled map latticel!)=" .. shadowmg break_dowq via UDV is expected, and the ghaotlc
=x§1'\‘) [19]. The intermittent transiton to CS initiates sy_nchronlzed trajectories obtained through the numerical so-
through an unstable-unstable pair bifurcation occurring onvtion of Eq. (1) are expected to be shadowed over a longer
the synchronization manifold. The unstable periodic orbit unime interval [6], but which may be enough for practical
dergoing this bifurcation, and all its infinite preimages, in- PUrPosese.g., when computing dimensions and entropies
crease their unstable dimension by one unit. Since there re- "€ shape of the probability distributions in Fig. 3 is
mains an infinitely large number of periodic orbits that did Gaussian-like, with different variances’, according to the
not undergo this increase, the synchronization manifold fail¥@lueé whicha takes. The Gaussian nature BfA,(n)) is
to be hyperbolic through unstabie dimension variab[itg]. ~ already expected on general grourias], and the distribu-
This violates one of the mathematical requirements foion as & whole drifts toward positive valuesiof(n), as«
hyperbolicity and shadowing, which is the continuous split-increases. Whemr=a* the averagg\,(n)) crosses zero
ting of stable and unstable invariant subspaces along the &"d has a maximum UDVFig. 4) since, at this point,
tractor[4]. If we start off, but very near the synchronization (A2(n)) equals the infinite-time limit of 5(n), and UDV is
manifold, after it has lost hyperbolicity through UDV, the More intense as the average of the timeistribution crosses
corresponding trajectory approaches unstable orbits with difZ€r0. This means that there are counterbalancing contribu-
ferent unstable dimensions. As a result, there are both timdons from the negative and positive finite-time exponents, as
intervals for which the trajectory is, on average, approachind/ustrated by the distribution forr=1.14834 «* shown in
the manifold, and other intervals for which it is repelled, alsoFig- 3. The point at whicki\ ,(n))=0 also marks the loss of
on average. This behavior is quantified by the largest finitefransversal stability of the synchronization manifold, or a
time transversal Lyapunov exponent(n) [9]. If it is nega- ~ Plowout bifurcation [21]. Accordingly, the points on the
tive (positive a trajectory close to the CS state will be at- curve €*(a) (Fig. 1) were also computed by imposing that
tracted(repelled on average from it. The presence of UDV (A2(n))=0, which furnished the same results as those ob-
generates random fluctuationsof(n) around zero, in such tained with help of the order parameter thus confirming

a way that we can study its statistical distributi@o]. the relationship between the loss of synchronization and the
We get a numerical approximation for the probability dis- shadowing breakdown via UDV.
tribution of this exponent, denoted &\ ,(n)), by consid- In the vicinity of the pointa=«a* the shadowing times

ering a large number of trajectories of lengtHrom initial can be very short, and the validity of the computed numerical
conditions randomly chosen in the synchronization manifoldtrajectories is doubtful. It results that the timeexponents
In Fig. 3, we show some distributions of time-50 exponents(with n greater than the shadowing tilnemay suffer
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from similar shadowability problems, when taken individu- quences. As a consequence of having been left with an infi-
ally, as the chaotic trajectories themselves. However, imite number of transversely stable orbits, the dimension of
terms of the numerical diagnostics of UDV, we are actuallythe unstable subspace varies from point to point along the
interested in statistical properties of the tim&xponents, as synchronization manifold. There are severe consequences
their averages and variances. The former yields the poinfrom the point of view of the validity of numerical trajecto-
where UDV is the most intense, through a blowout instabil-ries obtained by computer simulation of high-dimensional
ity, whereas the latter can be used to estimate shadowingxtended systems, from which a coupled logistic map lattice
times [5]. On the other hand, in some physically relevanthas been chosen as a fundamental and representative ex
cases, statistical quantities such as these have been foundample.
be meaningful despite unstable dimension variabjg|. The numerical trajectories may lose their validity when
For a>a*, the relative number of positive time-expo-  taken in isolation, since they are no longer shadowed by true
nents increases and we progressively return to a situatiochaotic orbits for a reasonable time. The shadowing proper-
where UDV is less pronounced, and better shadowing propties become worse as we approach the point whereby the
erties are expected. For example, when 2.5, Fig. 3 indi-  synchronization manifold loses transversal stability. The sta-
cates that almost all time-exponents are positive. This tistical properties of transverse finite-time Lyapunov expo-
means that even though the lattice trajectories are far froments indicate that both the completely synchronized and
being CS, they are nonetheless better shadowed than befosmmpletely unsynchronized maps have adequate shadowing
Figure 4 also depicts the variance of the distributions, showproperties, and the validity of numerical results within those
ing that it is roughly constant unti reaches the blowout realms is fairly well established. While our discussion was
value o*, after that the distribution broadens up and thebased on a specific coupled map lattice, the general features
variance increases. obtained here are rather typical for complex systems present-
In conclusion, we present numerical evidence that the ining regular and chaotic behavior in space and time. The con-
termittent transition to complete synchronization in anection between shadowing breakdown and intermittent tran-
coupled map lattice is followed by a strong violation of hy- sition to complete synchronization identified in this work is a
perbolicity in the synchronization manifold. This breakdown common feature of complex systems.
begins with an unstable-unstable pair bifurcation through This work was made possible through partial financial
which an unstable periodic orbit and all its preimages emsupport from the following Brazilian research agencies:
bedded in the synchronization manifold lose transversal sta&<APESP, CNPq, CAPES, and Fundadraucaia. C.G. was
bility. This is the typical way in which invariant manifolds also supported by A. V. Humboldt Foundation. We acknowl-
lose transversal stability in riddling-blowout bifurcation se- edge C. Anteneodo for useful suggestions.
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