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Validity of numerical trajectories in the synchronization transition of complex systems
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We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown
via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly
nonhyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state.
There are potentially severe consequences of these facts on the validity of the computer-generated trajectories
obtained from dynamical systems whose synchronization manifolds share the same nonhyperbolic properties.
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There is a steadfast interest in spatially extended dyna
cal systems as coupled map lattices, in which both space
time are discrete variables, due to their various physical
biological applications@1#. Complete~or identical! synchro-
nization ~CS! occurs when all the coupled maps have t
same value for their dynamical variables@2#. Weakly coupled
maps are not usually identically synchronized, but, as
coupling strength increases, they can reach CS. The appr
to this state occurs in an intermittent fashion, alternating q
escent states of synchronized behavior with irregular bu
@3#. As the average duration of these quiescent states ten
infinity, we attain a CS state. The onset of the transition fr
CS to intermittent synchronization indicates that the dyna
ics of the synchronized state ceases to be hyperbolic thro
a mechanism called unstable dimension variability~UDV!
@4#.

A dynamical system~such as a chaotic attractor! whose
invariant set exhibits UDV fails to have the splitting betwe
stable and unstable manifolds, which is consistent with
dynamics. The consequences of UDV are potentially dan
ous from the point of view of the reliability of the numeric
trajectories one gets from the dynamical system@5#. A
computer-generated chaotic trajectory is unavoidably s
jected to one-step errors caused by using finite-precis
arithmetic, which makes the noisy trajectory to exponentia
diverge from the true chaotic orbit it is intended to represe
However, when the dynamical system presents the shad
ing property, there exists a true chaotic trajectory which st
uniformly close to the numerical trajectory for a certain tim
interval @6#. This shadowing trajectory may not be that pa
ticular orbit we have been looking for, but for man
purposes—as when computing statistical quantities—t
can be equally useful@7#.

In this Brief Report, we aim to harness the connect
between the intermittent transition from CS and the shad
ing breakdown induced by UDV, so as to explain the int
mittency features from the statistical properties of the app
priate finite-time Lyapunov exponents. Moreover, if t
shadowing breakdown is so severe that we could not fin
true chaotic trajectory that stays close to the numerical
jectories we generate, the latter have their validity comp
mised. As we will see, this will be typically the case in th
1063-651X/2003/68~6!/067204~4!/$20.00 68 0672
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transitional regime from CS. Previous papers@8# have dealt
with shadowing breakdown via UDV in lattices of maps a
oscillators with local coupling. On the other hand, t
present work deals withnonlocally coupledmaps, for which
a transition to CS is observed as the effective coupling ra
is varied, from a global to a local interaction form@9#. The
latter fact can be fully appreciated only in large lattices. D
tailed analyses of synchronization have been carried out
globally coupled lattices@10#. Our main contribution in this
note has been to put together, in a unified framework, id
from shadowing theory@11#, on-off intermittency@12#, and
chaos synchronization@2,3#, using a coupled map lattice as
representative example of a complex system.

We examine a one-dimensional chain ofN coupled cha-
otic logistic mapsx° f (x)54x(12x), wherexn

( i )P@0,1# is
the state variable for the sitei ( i 51,2, . . . ,N) at timen, with
a coupling prescription in which the interaction strength b
tween sites decays in a power-law fashion with the latt
distance@13#

xn11
( i ) 5~12e! f ~xn

( i )!1
e

h~a! (
j 51

N8 f ~xn
( i 1 j )!1 f ~xn

( i 2 j )!

j a
,

~1!

where 0<e<1 anda>0 are the coupling strength and e

fective range, respectively, andh(a)52( j 51
N8 j 2a, with N8

5(N21)/2 for N odd. This coupling prescription allows on
to pass continuously from a local Laplacian-type coupli
~when a→`) to a global ‘‘mean-field’’ coupling (a50).
Periodic boundary conditions and random initial conditio
are assumed.

A numerical diagnostic of CS is provided by the ord
parameterzn5Rnexp(2piwn)[(1/N)( j 51

N exp(2pixn
(j)), where

Rn and wn are the amplitude and angle, respectively, o
centroid phase vector, for a one-dimensional chain with
riodic boundary conditions@13#. A time-averaged amplitude
R̄ is computed over an interval large enough to warrant t
the asymptotic state has been achieved by the lattice. A
state impliesR̄51, for all the phase vectors gyrate togeth
with the same phase. When the maps are completely non
chronized, on the other hand, we get a pattern in which
©2003 The American Physical Society04-1
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site amplitudesxn
( j ) are so spatially uncorrelated that the

may be considered essentially as random variables, such

R̄ vanishes.
Figure 1 represents a portion of the coupling parame

plane~strength versus effective range! exhibiting regions for
which the coupled maps have~i! synchronized chaotic orbit
~CS!; ~ii ! a transitional regime where CS is eventually
tained after a transient characterized by intermittent burst
nonsynchronized behavior; and~iii ! completely nonsynchro
nized orbits. These regions are bounded by the curvese* (a)
andec(a). The former corresponds to the values ofe anda

for which the average order parameter magnitudeR̄ ceases to
be equal to unity. The latter curve was computed by mean
the finite-time Lyapunov exponents, as will be explain
later on in this Brief Report.

Let us fix the effective range parameter at an intermed
value, saya50.4, and decrease the coupling strengthe from
its maximum value 1.0 to zero. Fore large enough we have
R̄51, or a chaotic CS state. Whene5ec(0.4)'0.69 this CS
state starts to be interrupted by intermittent bursts of nons
chronized behavior, but eventually the stationary CS stat
achieved again. The bursting becomes more frequent as
coupling strength is further decreased and, ate5e* (0.4)
'0.57, the order parameter vanishes and the lattice beco
completely nonsynchronized, never to return to a CS s
again. Hence, the intervalec,e,e* characterizes a trans
tion region for which the intermittent bursting is a transie
phenomenon.

This scenario is robust and present for a wide portion
the coupling parameter plane. As we increase the value o
effective range parametera from zero, it turns out that the
interval characterizing a transition region is pushed towa
higher values of the coupling strengthe. We can understand
this fact since the higher the effective rangea is, the closer
we are to a locally coupled lattice, in which only the near
neighbors contribute in a significant way, such that it b
comes increasingly more difficult to have a stationary C

FIG. 1. Synchronized regimes in the parameter plane of c
pling strengthe vs effective rangea, for a lattice with N521
coupled logistic maps.
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We call ac'0.940 the range parameter value for which t
first critical curve reaches the upper limit given byec(ac)
51. Accordingly,a* '1.146 is the value where the secon
critical curve is such thate* (a* )51. Hence, fora.a* ,
we will not observe a stationary CS state, irrespective of h
strong the coupling may be, i.e., the intermittent burst
continues for an arbitrarily long time.

Near the second critical curve in Fig. 1 the average du
tion of the laminar regions obeys a power-law scaling^t&
;(a2a* )2g, when a→a* , and with g51/2 within the
numerical accuracy. This suggests that the transition to s
chronization occurs through a crisis@14#. The rationale for
this analogy identifies a burst between laminar regions a
chaotic transient resulting from the collision of a chao
attractor with an unstable periodic orbit. The average cha
transient length in one-dimensional maps, such as the log
map f (x)5ax(12x) at a54, obeys an identical scaling an
with the same critical exponent@15#. This crisis is mediated
through an unstable-unstable pair bifurcation at those po
at which there is such a collision@16#.

Another distinctive feature of the intermittent transition
synchronization is the universal character of the statist
distribution of the laminar regions. In Fig. 2 we present
histogram for the number of the laminar regions with resp
to their lengths. Two different regimes are highlighted in t
insets: for small laminar regions the histogram is well fitt
by a power-lawt2Ã, with Ã'1.5; whereas the scaling i
exponential (e2kt) for large intervals, withk'1023. The
presence of the 3/2 scaling plus the exponential decay sh
that the intermittent transition to CS is of the on-off typ
@12#. We note that, in the neighborhood of the unstab
unstable pair bifurcation which mediates the crisis, a giv
map of the lattice chain receives random kicks through
coupling with its neighbors. These kicks, in the vicinity
the bifurcation point, are responsible for the observed on
intermittency. In fact, the existence of two distinct scalings

-

FIG. 2. Normalized histogram for the relative number
synchronization plateaus with a given length, fore51.0 and
a51.147.
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Fig. 2 with a shoulder indicates the presence of noise in
on-off intermittent scenario, with a crossover time related
the noise level@17#.

In the transition region, trajectories off but very near t
synchronization manifold experience intermittent burstin
such that numerical diagnostics using an insufficiently la
time interval could erroneously point out CS@18#. On the
other hand, this intermittent bursting is directly related to
shadowing breakdown of chaotic trajectories in the synch
nization manifold of the coupled map latticexn

(1)5•••

5xn
(N) @19#. The intermittent transition to CS initiate

through an unstable-unstable pair bifurcation occurring
the synchronization manifold. The unstable periodic orbit u
dergoing this bifurcation, and all its infinite preimages,
crease their unstable dimension by one unit. Since there
mains an infinitely large number of periodic orbits that d
not undergo this increase, the synchronization manifold f
to be hyperbolic through unstable dimension variability@16#.

This violates one of the mathematical requirements
hyperbolicity and shadowing, which is the continuous sp
ting of stable and unstable invariant subspaces along th
tractor@4#. If we start off, but very near the synchronizatio
manifold, after it has lost hyperbolicity through UDV, th
corresponding trajectory approaches unstable orbits with
ferent unstable dimensions. As a result, there are both
intervals for which the trajectory is, on average, approach
the manifold, and other intervals for which it is repelled, a
on average. This behavior is quantified by the largest fin
time transversal Lyapunov exponentl2(n) @9#. If it is nega-
tive ~positive! a trajectory close to the CS state will be a
tracted~repelled! on average from it. The presence of UD
generates random fluctuations ofl2(n) around zero, in such
a way that we can study its statistical distribution@20#.

We get a numerical approximation for the probability d
tribution of this exponent, denoted asP„l2(n)…, by consid-
ering a large number of trajectories of lengthn from initial
conditions randomly chosen in the synchronization manifo
In Fig. 3, we show some distributions of time-50 exponen

FIG. 3. Normalized histogram of the largest transversal fin
time Lyapunov exponents for different values of the effective ran
a ande51.0.
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obtained for different values of the effective rangea, which
here plays the role of a bifurcation parameter. The criti
value for the onset of UDV is also the onset of intermitte
transition to CS, ata5ac , where an unstable-unstable pa
bifurcation occurs. Numerically the onset of UDV was es
mated through computing the value ofa for which the frac-
tion of positive finite-time Lyapunov exponents,f(n)
5*0

`P„l2(n)…dl2, becomes non-zero, yielding the poin
on the curveec(a) depicted in Fig. 1. Hence, fora,ac , no
shadowing breakdown via UDV is expected, and the cha
synchronized trajectories obtained through the numerical
lution of Eq. ~1! are expected to be shadowed over a lon
time interval @6#, but which may be enough for practica
purposes~e.g., when computing dimensions and entropie!.

The shape of the probability distributions in Fig. 3
Gaussian-like, with different variancess2, according to the
value whicha takes. The Gaussian nature ofP„l2(n)… is
already expected on general grounds@20#, and the distribu-
tion as a whole drifts toward positive values ofl2(n), asa
increases. Whena5a* the averagê l2(n)& crosses zero
and has a maximum UDV~Fig. 4! since, at this point,
^l2(n)& equals the infinite-time limit ofl2(n), and UDV is
more intense as the average of the time-n distribution crosses
zero. This means that there are counterbalancing contr
tions from the negative and positive finite-time exponents
illustrated by the distribution fora51.14834*a* shown in
Fig. 3. The point at whicĥl2(n)&50 also marks the loss o
transversal stability of the synchronization manifold, or
blowout bifurcation @21#. Accordingly, the points on the
curve e* (a) ~Fig. 1! were also computed by imposing th
^l2(n)&50, which furnished the same results as those
tained with help of the order parameterR̄, thus confirming
the relationship between the loss of synchronization and
shadowing breakdown via UDV.

In the vicinity of the pointa5a* the shadowing times
can be very short, and the validity of the computed numer
trajectories is doubtful. It results that the time-n exponents
~with n greater than the shadowing time!, may suffer

-
e

FIG. 4. Average value and variance~inset! for the distribution
of the finite-time Lyapunov exponents closest to zero vsa, when
e51.0.
4-3
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from similar shadowability problems, when taken individ
ally, as the chaotic trajectories themselves. However,
terms of the numerical diagnostics of UDV, we are actua
interested in statistical properties of the time-n exponents, as
their averages and variances. The former yields the p
where UDV is the most intense, through a blowout instab
ity, whereas the latter can be used to estimate shadow
times @5#. On the other hand, in some physically releva
cases, statistical quantities such as these have been fou
be meaningful despite unstable dimension variability@22#.

For a.a* , the relative number of positive time-n expo-
nents increases and we progressively return to a situa
where UDV is less pronounced, and better shadowing pr
erties are expected. For example, whena52.5, Fig. 3 indi-
cates that almost all time-n exponents are positive. Thi
means that even though the lattice trajectories are far f
being CS, they are nonetheless better shadowed than be
Figure 4 also depicts the variance of the distributions, sh
ing that it is roughly constant untila reaches the blowou
value a* , after that the distribution broadens up and t
variance increases.

In conclusion, we present numerical evidence that the
termittent transition to complete synchronization in
coupled map lattice is followed by a strong violation of h
perbolicity in the synchronization manifold. This breakdow
begins with an unstable-unstable pair bifurcation throu
which an unstable periodic orbit and all its preimages e
bedded in the synchronization manifold lose transversal
bility. This is the typical way in which invariant manifold
lose transversal stability in riddling-blowout bifurcation s
,
ce
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quences. As a consequence of having been left with an
nite number of transversely stable orbits, the dimension
the unstable subspace varies from point to point along
synchronization manifold. There are severe consequen
from the point of view of the validity of numerical trajecto
ries obtained by computer simulation of high-dimension
extended systems, from which a coupled logistic map lat
has been chosen as a fundamental and representative
ample.

The numerical trajectories may lose their validity wh
taken in isolation, since they are no longer shadowed by
chaotic orbits for a reasonable time. The shadowing prop
ties become worse as we approach the point whereby
synchronization manifold loses transversal stability. The s
tistical properties of transverse finite-time Lyapunov exp
nents indicate that both the completely synchronized
completely unsynchronized maps have adequate shado
properties, and the validity of numerical results within tho
realms is fairly well established. While our discussion w
based on a specific coupled map lattice, the general feat
obtained here are rather typical for complex systems pres
ing regular and chaotic behavior in space and time. The c
nection between shadowing breakdown and intermittent tr
sition to complete synchronization identified in this work is
common feature of complex systems.
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